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Abstract

Root architectural models (RSA) have become important tools in root research and plant 
phenotyping for studying root traits, processes, and interactions with the environment. The
models have been used to simulate how various root traits and processes influence water 
and nutrient uptake. At a more technical level, they have been used to develop phenotyping
technology, particularly for testing algorithms for segmenting roots. To compute these 
quantitative estimates regarding plant nutrition and root functioning, much development 
occurred in the last decade increasing the complexity of the models. In this chapter, we 
describe first the application of the models to questions in plant biology, breeding, and 
agronomy, and second the development of the models. We end with a small outlook 
suggesting that models need benchmarking and validation and that new developments are 
likely to include better descriptions of root plasticity responses and focus on biological 
interactions among (soil) organisms, including mycorrhizal fungi.

Keywords: FSPM, Simulation, root system architecture, plant nutrition, ideotype 
development, plant-soil interactions
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Introduction

Mathematical models of plant roots are formulations that quantitatively describe the 
morphology, size, growth, or physiology of plant roots. These models have a long history of 
development, and different root models have been presented in the literature. Among the 
different models, root system architectural models (RSA models) are distinguished from 
other model types by their specific concern for which roots of what types are where in 
space, and they give arguably the most explicit and detailed representations of the root 
system. The first root architectural models were developed at the end of the 1980s (Fitter, 
1987; Diggle, 1988; Pagès et al., 1989). At the time the simulated root systems were 
relatively small and the simulations were mainly concerned with representing the 
geometric aspects of root architecture. Since those early beginnings, these models have 
been developed further and the range of applications has expanded. The models have 
added physiological aspects of root growth and functioning and thereby in effect have 
become what we now call functional structural plant models (Vos et al., 2010), albeit with 
the focus belowground, not aboveground. The functionality and application of RSA models 
were reviewed by Dunbabin et al. (2013). Since then new model codes have been released 
and many model studies published. The RSA models have been coupled to soil and shoot 
models, and have acquired more detail and functionality. Significant effort went into 
improving the code, and the model development typically expanded from single 
researchers to development teams. In this chapter, we aim to describe the advances of 
these models during the last decade (2010-2020) and how the simulation exercises 
contributed to our scientific understanding of root and plant functioning.

Advances in the application of RSA models

During the last decade, RSA models have been applied to study an increasing number of 
plant species, root traits, and plant physiological processes. The models have been coupled 
to increasingly more complex simulations of the (soil) environment (see chapter 3) and 
many papers focus on the interaction between environment and phenotype. This has led to 
applications in the area of breeding, agronomy, and ecology, although these fields are 
strictly speaking at a higher scale than single plant models. Currently, our understanding of
the function of phenotypic root traits is still fairly limited, but the RSA model studies that 
we highlight here have demonstrated the complexity of, and provided insights into, 
phenotype by environment interactions.

Root traits studied

RSA models contrast with root length density models by explicitly simulating the 
placement of each root whereas root length density models typically assume homogeneous 
distribution of roots within a given soil layer (Postma et al., 2008). Simulating competition 
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for nitrate among different species (maize, bean, squash), Postma and Lynch (2012) 
showed that a homogeneous root distribution gave much greater nitrate uptake than a root
distribution determined by root architecture. We can conclude from this that root 
architecture restricts the foraging capacity of the root. This immediately raises the question
as to what the optimal architecture is for the acquisition of various nutrients. Several 
studies were published in which the sensitivity of nutrient uptake for root architectural 
parameters was tested. These parameters are usually directly translated to root 
architectural traits. In many cases, the sensitivity depended on the simulation environment
and nutrient simulated, giving some insight into the complex interactions between the 
environment and root architecture. Additionally, the studies suggested some tradeoffs exist
for optimizing root architecture towards the acquisition of different nutrients.

A relatively simple to understand trait is root growth angle of branch- or adventitious roots
(Figure 1). Although various angles might be measured during phenotyping, including 
insertion angles, set-point angles, and the rate of the gravitropic response (Freschet et al., 
2020), the overall angle causes the root system to be either shallower or steeper. Dathe et 
al. (2016) simulated steeper and shallower root growth angles in maize and showed that 
the optimum for nitrate uptake depended on the rate of nitrate leaching, with fanned 
phenotypes (larger variation in root growth angle) achieved relatively good performance in
many environments. Already in 2001, Rubio et al. (2001) showed that shallow root growth 
angles may be advantageous for P uptake by basal roots in bean, and this work was 
recently followed up by a much larger set of simulations including mechanistic simulation 
of P-uptake and simulating phenotypes that varied both in root growth angle and the 
number of basal roots (Rangarajan et al., 2018). The study gives support for the existence 
of phenotypic variation in both traits, as the optimum is strongly dependent on the 
environment simulated. Nevertheless, the overall picture is that plants are faced with a 
tradeoff between shallow and deep placement of roots through a change in root growth 
branching angle and that the tradeoff determines the relative uptake of shallow (P) and 
deep (nitrate) resources. Experimental papers confirming the relation between P and 
nitrate uptake and root growth angle include greater P uptake by bean phenotypes with 
shallow basal root growth angles (Miguel et al., 2015) and greater N uptake by deep 
rooting maize (Trachsel et al., 2013).

Phenotypic variation in the number of root axes was studied in several papers. We already 
mentioned the simulation study of Rangarajan et al. (2018) (Figure 2), in which 2 or 3 
whorls of basal roots were both the most frequently observed phenotype and the optimal 
number in many simulation scenarios. Lateral root branching density, which is the inverse 
of the interbranching distance, has been studied experimentally in many species (Pagès, 
2019; Freschet et al., 2020). Postma et al. (2014a) simulated observed phenotypic variation
for this trait and predicted a tradeoff between phenotypes with many short and few long 
lateral roots. The many short phenotype would be advantageous for P uptake whereas the 
few long phenotype would benefit nitrate uptake. Experimental confirmation of the results 
came from two papers studying the same set of genotypes under P deficiency (Jia et al., 
2018) and N deficiency (Zhan and Lynch, 2015). With a semi RSA model, Heppell et al. 
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(2015) concluded that higher branching in the topsoil and lower in the subsoil could 
increase P uptake by 42%. In another simulation study, dense root systems were beneficial 
to quickly capture in-season rainfall but not for exploiting water stored before the growing 
season (Tron et al., 2015). Recently, Muller et al. (2019) took the concept of branching a 
step further and distinguished randomness in branching from structured variation. RSA 
models will be well suited to simulate these various kinds of variation in branching and 
might estimate the utility of the different phenotypes in various soil environments. The 
lateral root branching density not only interacts with the environment but also with other 
traits. For example, Postma and Lynch (2011a) simulated a positive interaction between 
the number of branches and the amount of root cortical aerenchyma (discussed further 
below).

RSA models have also been used to investigate anatomical traits. So far the function of 
these has been difficult to study, so RSA models have been used to pose and simulate 
hypotheses on how anatomical traits influence nutrient uptake and plant physiology. Root 
cortical aerenchyma, the formation of air spaces in the root in this case through 
programmed cell death, is an interesting example. Aerenchyma formation is negatively 
correlated to both root respiration and root nutrient content (mol cm-3) and was 
hypothesized to reduce the metabolic cost of roots, allowing new root growth and thereby 
greater nutrient uptake (Fan et al., 2003; Postma and Lynch, 2011a; Postma and Lynch, 
2011b). The simulation studies suggest large benefits from a metabolically more efficient 
root system, especially in maize where aerenchyma formation covers a relatively large 
percentage of the cortex as opposed to bean where aerenchyma formation is much less 
prevalent and is in part replaced by the loss of the whole cortex (cortical senescence) due 
to secondary growth. Variation in secondary growth itself, however, may be a form of 
metabolic efficiency that can be achieved when stressed plants with smaller shoots have 
reduced water requirements (Strock et al., 2017). Loss of the whole cortex also occurs in 
barley and several other Poaceae, due to programmed cell death rather than secondary 
growth (Schneider et al., 2018). Cortical senescence is not only associated with reduced 
respiration and nutrient content but also reduced water and nutrient uptake (Schneider et 
al., 2017b). Simulating these processes showed that cortical senescence is beneficial when 
it occurs in the major root axes, but not in the lateral roots (Schneider et al., 2017a). 
Indeed, cortical senescence in lateral roots was not observed.

One of the most studied anatomical traits in plant nutrition is the formation of root hairs. 
Different approaches to simulating the function of root hairs have been published. 
Zygalakis et al. (2011) presented a dual-porosity model for root hairs in which they take 
account of the interaction between root hair geometry and soil particle geometry. The 
model simulated greater uptake from P in micropores and showed that uptake was less 
sensitive to soil moisture content than previously simulated. Leitner et al. (2010) took a 
different approach and used homogenization, a mathematical procedure, to derive an 
analytical solution for the uptake of nutrients by root hairs. Such analytical solutions can 
compute much faster and thereby be useful when simulating 100,000+ root segments.
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Thus far we have treated the architectural traits as static traits, but in reality, many of these
traits are influenced by the environment. Simulation models currently include some of this 
root growth plasticity, even though much about the mechanisms and regulation of root 
growth plasticity is still unknown. The models often include empirically derived relations 
between environmental conditions, plant status and root growth responses (Dunbabin et 
al., 2011; Tournier et al., 2015; Postma et al., 2017). Root responses are typically defined in 
terms of tropisms (change in the growth direction), branching (change in the rate of 
primordia formation) or elongation rate. These empirical relations may be sufficient to 
study root growth plasticity as a functional trait. Henke et al. (2014) concluded that root 
growth plasticity in a heterogeneous soil would enhance N uptake. Similarly, Chen et al. 
(2013) produced a simulation study with root proliferation in response to P banding which
suggested large benefits from the proliferation response.

Root processes studied

Functional structural plant models (FSPM) not only simulate structure, but also the 
relevant processes associated with that structure. In this respect, root architectural models 
advanced strongly as they were coupled to models of plant metabolism, nutrient and water 
uptake. Besides the interactions between structure and environment, the mechanics of the 
structure and soil were explored.

To simulate plant metabolism, RSA models were coupled to shoot models, albeit not often 
geometric shoot models (see section 3). This coupling allowed simulation of nutrient and 
carbon balances and source-sink relations, which play an important role in many 
simulations. The models typically restricted total carbon consumption to the carbon 
available from photosynthesis and carbon storage. Carbon consumption is restricted by 
reducing the growth rate of the root system. Several conclusions resulted from these 
simulations: 1) plants might cycle dynamically through periods of source and sink 
limitations, 2) large uncertainty exists with regard to what causes plant growth to be 
source or sink limited, and 3) oscillatory behaviour in source-sink ratios arises when the 
functional equilibrium responds to current plant status through allocation which is 
inherently slow and not corrected for future uptake efficiencies (Postma et al., 2014b). 
Source-sink models treat a trait like branching density as an increase in the sink term. 
Assuming no change in the source term, roots will have to stay shorter (Postma et al., 
2014a). Although much uncertainty exists around source and sink limitations, especially of 
nutrient-deficient plants, it is currently one of the easiest ways to understand tradeoffs 
among RSA traits and foraging limitations. Similar to carbon-based source-sink relations, 
nutrient use efficiency concepts (defined as the amount of nutrients needed to construct 
the root system) have been implemented. Greater nutrient use efficiency (NUE, here the 
amount of nutrients invested for the amount of nutrients acquired) for N and P, for 
example, was achieved by simulating root cortical senescence and aerenchyma formation 
(see the section above). Interestingly, the model was more sensitive to the NUE effects than
to the carbon saving effects, which may suggest that the cost of the root system might be 
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computed in terms of nutrient "investment costs" (Schneider et al., 2017a; Postma and 
Lynch, 2011a,b).

There has been much interest in nutrient and water uptake by root systems. Current 
models for nutrient uptake typically rely on a reaction-diffusion-advection equation for 
nutrient transport in the soil and a Michaelis-Menten based nutrient uptake term. It is often
said that the models are relatively insensitive to the Michaelis-Menten kinetic parameters, 
as in many scenarios the soil becomes the limiting factor. York et al. (2016) showed that 
under competitive conditions the maximum uptake rate, Imax, can give a (small) 
competitive advantage, and that sensitivity to Imax depends on other RSA traits and soil 
conditions (Figure 3). This is an important realization, especially when scaling up from 
single plants to competitive stands, and to understand interactions among plant species.

The RSA modeling community has been especially active in the area of simulating plant 
water uptake and transport. A short history of the simulation of water flow from the soil 
through the root system to the plant starts with representing flow using electrical analogies
(e.g. Honert 1948). Based on these analogies, Alm et al. (1992)  developed a numerical 
model of water transport for an unbranched root. This was extended to branched root 
systems by Doussan et al. (1998).  Javaux et al. (2008) coupled the Doussan model to the 
well known SWMS (forerunner of Hydrus) soil water model and thereby enabled further 
studies of compensatory water uptake and hydraulic lift. Lobet et al. (2014) expanded this 
work to include water transport through a geometrically explicit  shoot. Doussan’s 
equations were originally based on root water potentials which are 'corrected' for gravity, 
such that gravity does not appear in his equations. Schnepf et al. (2018b) present a version 
that introduces gravity into the equation. Meunier et al. (2017b) and Meunier et al. (2017a)
present a hybrid analytical-numerical solution for a branched root system.

Thus far, model studies suggested there is no optimal root architecture for water uptake, as
it all depends on the environment (Tron et al., 2015). This is by itself not surprising, as 
water and roots need to coincide in time and space. This means that deep rooting is only 
beneficial in environments with deep water available, and with deep water recharge during
rainy seasons. However, the model studies gave more precise insights into these 
interactions between environment and root phenotype. A long-standing issue in plant 
hydrology has been whether root to shoot signaling occurs via hormonal transport from 
root to shoot. Huber et al. (2014) concluded that shoot responses to soil drying might be 
explained just as well or better by a hydraulic signal (a change in xylem water potentials as 
the soil is drying) than by hormonal transport.

Trait synergies and integrated phenotypes

One of the great challenges in understanding the utility of a trait is that interactions among 
traits can result in both synergistic and antagonistic effects on root functioning. For 
example, Miguel et al. (2015) demonstrated experimentally that bean phenotypes with 
either long root hairs or shallow basal root angles had greater growth on low P soils. 
However, phenotypes that had both long root hairs and shallow root angles had far greater 
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growth than phenotypes with only one of these traits. Such interactions were easily 
explored with RSA models. Examples are found for tiller number interacting synergistically 
with root cortical senescence (Schneider et al., 2017a) and lateral root branching density 
positively interacting with aerenchyma (Postma and Lynch, 2011a). Integrated phenotypes 
that combine variations in multiple traits and may represent real-world phenotypes, can be
explored further. Such integrated phenotypes were simulated by Rangarajan et al. (2018) 
and York et al. (2016) (Figures 2 and 3). Phenotypic variation is not a continuum but tends 
to group in what might be termed root system types. Bodner et al. (2013) worked out such 
types based on statistics and these types were simulated to study water uptake in different 
scenarios (Leitner et al., 2014b; Tron et al., 2015).

Simulating the soil environment

Plants in the natural environment grow their roots in a complex, dynamic, heterogeneous 
soil matrix. At the beginning of the decade, most RSA models largely ignored this 
environmental complexity to focus on simulating growth under uniform and nonrestrictive 
conditions. These simplifying assumptions were made partly to simplify initial model 
development, but also because model representations of many soil processes (even 
uncoupled from RSA models) were still under development (Vereecken et al., 2016). 
Further, most RSA models were initially parameterized using data from experiments 
conducted under glasshouse or laboratory conditions at the mesocosm scale or smaller, 
meaning many of the parameters available for calibration were, in fact, observed under 
uniform and nonrestrictive conditions. Therefore, credit for progress in modeling the soil 
environment must go as much to the researchers developing improved methods for field 
measurements that can be used for model validation as to those writing down the model 
code.

Whether root growth responses to soil hardness should be thought of as primarily driven 
by average responses or by local heterogeneity (i.e. roots grow through cracks and 
biopores) is an unresolved research question. It is therefore not surprising that modeling of
the interactions between soil hardness and root growth has taken two differing directions: 
one investigating how root architecture responds to hard soil at the macroscopic scale, and 
another trying to represent soil heterogeneity at the scale of the root tip. De Moraes et al. 
(2018) used RootBox to simulate the effect of soil strength and water status on soybean 
root extension rates. They calculated soil strength using a soil-specific exponential function
of bulk density and water content, and additionally assumed that root growth was affected 
directly by soil matric potential (independently of the effect of water status on soil 
strength) according to the classic Feddes et al. (2001) root water uptake function. One 
intriguing feature of the de Moraes model is that by adjusting its empirical parameters it 
can account for the macroscopic changes in root architecture attributable to soil biopores 
without requiring highly detailed simulations of individual pores. Similarly, SPACSYS (Wu 
et al., 2007) has included a term for the effect of soil impedance on root growth since the 
initial description of the model. This term can only be varied at the root class level and 
requires user calibration, but when sufficiently detailed soil profile data are available it has 

7

229
230
231
232
233
234
235
236
237
238

239

240
241
242
243
244
245
246
247
248
249
250
251
252

253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269



been used to reproduce the observed root distribution of field-grown wheat (Bingham and 
Wu, 2011). By contrast representation of biopores in R-SWMS takes an explicitly detailed 
approach. The magnitude and direction of each root tip's growth vector is scaled by the 
frictional forces from the immediately surrounding soil, represented as a tensor (array of 
force vectors) computed from the conductance (inverse of penetration resistance) of the 
eight nearest soil grid nodes (Landl et al., 2016). This approach allows simulation of, in 3D 
space directed, root responses to individual pores down to the scale of the simulated soil 
mesh. Using this approach, Landl et al. (2019) showed that root penetration of strong soil 
layers via large-diameter biopores is likely a substantial benefit to net plant water uptake, 
even when accounting for a loss of water uptake caused by incomplete contact between the
root and the pore wall.

Simulating rhizosphere processes and soil biota

Rhizosphere models are typically at a scale below RSA models, simulating single root tips 
or segments and the rhizosphere around. These models have been reviewed by Darrah et 
al. (2006). RSA models, however, have been used to up-scale the rhizosphere models to 
whole-plant level. Although some difficulty exists with respect to overlap between 
rhizospheres of different roots, this problem is typically mitigated by setting the outer 
boundary to the mean mid-distance between roots and by the assumption that overlap is 
relatively small (Postma and Lynch, 2011a; Postma and Lynch, 2012). Alternatively, the 
rhizosphere models are scaled up to 2 or 3-dimensional models including several root 
segments. This approach was taken by de Parseval et al. (2017) who specifically simulated 
facilitation as it may occur between roots differing in the amount of organic acid exudation.
Nevertheless, reduced dimensionality of the models allows the rhizosphere to be simulated
with greater detail around the root. The utility of organic exudates was thus simulated by 
Schnepf et al. (2012) who coupled a citrate exudation model to a P uptake model. The more
computational intensive 3D approach was used by Fang et al. (2019) who coupled the RSA 
model RootBox to the eSTOMP chemistry model. The coupled model thereby simulated the 
chemical interaction between different solutes and the uptake of multiple nutrients. The 
detail around the root, including the importance of root diameter and root hair geometry, 
however, is typically lost in the 3D approaches which treat single root segments as sinks 
with a given surface area.

Rhizosphere processes not only include chemistry, but also microbial activity. Thus far 
little has been achieved in modeling these systems, in part because they are not well 
understood. In studies simulating the mycorrhizal system, Schnepf et al. (2016) and 
Schnepf et al. (2011) simulated the hyphal network of mycorrhizal fungi around a root to 
estimate the uptake of P by the hyphal network. Additionally, the SPACSYS model has been 
used to produce field-scale representations of microbially-mediated processes including 
N2O emissions (Wu et al., 2015) and N fixation (Liu et al., 2013), but to our knowledge these
were only validated with a 1D root profile and have not been extended to the full 3D RSA 
model.
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Application of RSA models in breeding

RSA models have application in breeding. Thus far, the application has been mostly limited 
to ideotype development by simulating trait-environment interactions and integrated 
phenotypes (see above). This is possible for an increasing number of crop species including
lupin, maize, bean, squash, rice, wheat, barley, and the model species Brachypodium (Liu et 
al., 2012; Postma and Lynch, 2012; see for example Dunbabin et al., 2013). Beyond the 
species level, parameterization at the genotype level has allowed understanding functional 
aspects associated with specific genotypes (Postma and Lynch, 2011a; York et al., 2015; see
for example Fang et al., 2019). York et al. (2015) used the RSA model SimRoot to show that 
changes in root phenotype that were introduced during a 100-year timeline for breeding 
were associated with greater N capture. So far, however, the direct application of models in
breeding has been limited, possibly because of a perception that RSA models have not yet 
been sufficiently validated (Koevoets et al., 2016; Ndour et al., 2017). However, an 
encouraging counterpoint to this perception comes from Zhao et al. (2017), who noted that
observations of pea seedling root phenotypes had little predictive power when correlated 
directly to mature root traits, but that using these same seedling traits to parameterize 
RootBox simulations resulted in predicted root lengths that corresponded well with 
observations of the mature plants. This suggests immediate applications of models to aid 
phenotyping, and we expect a greater role for these models in breeding in the future, as 
outlined by Lynch (2007), Tracy et al. (2020) and in detail by Ndour et al. (2017) for 
breeding for drought tolerance.

Application of RSA models in agronomy and ecology

Although agronomy and ecology are strictly speaking at a higher scale than these plant 
models, they have been used to understand plant-plant interactions and in the ecological 
realm, species diversity. By simulating stands of multiple plants, RSA models are useful to 
understand how plant traits affect root competition (Figure 4). Multiple plant stands are 
featured in CRootBox (Schnepf et al., 2018b) and OpenSimRoot (Postma et al., 2017). Using 
the later, Rangarajan et al. (2018) showed that the optimal number of basal roots in bean 
was lower when the planting density was higher. Such interactions between plant density 
and root architecture are currently poorly understood (Hecht et al., 2019) but of 
importance when breeding for high production at high plant densities and also for the 
translation of single plant phenotypes to an agricultural context (Hecht et al., 2020).

Future sustainable agriculture should be biodiverse. Intercropping studies are of renewed 
interest as robotics might solve long-standing issues in the mechanization of such cropping 
systems. Postma and Lynch (2012) simulated the competition between maize bean and 
squash root systems for nitrate and phosphorus and concluded that the architectures and 
acquisition strategies of these plants are complementary. The maize-bean-squash 
intercropping system is an ancient one, and the simulation study merely provides some 
mechanistic insights into the functioning of the intercrop as observed experimentally 
(Zhang et al., 2014). However, Evers et al. (2019) proposed that functional structural plant 
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models can be used to explore many more intercropping schemes and combinations, in 
order to reduce the number of systems tested experimentally. Such studies not only have 
utility in agriculture but will also contribute to our ecological understanding of 
biodiversity. Pagès et al. achieved much progress in this area by developing a relatively 
simple RSA model such that they were able to parameterize it for a wide range of species 
(Pagès et al., 2014; for example see Pagès and Picon-Cochard, 2014). This work in the 
future might be linked to databases of functional trait variation in ecology in order to 
explain the variation in functional root traits.

Application of RSA Models for refining experimental measurements

Once an RSA model has been validated to produce a realistic 3D root system, it immediately
becomes useful not just for asking questions about root architecture, but also as a tool for 
producing known root architectures that can be used to calibrate measurement techniques.
For example Lobet et al. (2017) used ArchiSimple to create a ground-truth library of 
images of root systems with known dimensions and then used these images for training of 
an image analysis tool. Similarly, Leitner et al. (2014a) used RootBox models to improve 
segmentation of neutron radiography images of living root systems by adding weight to 
detected paths that lie within the growth trajectory expected by RootBox and 
downweighting as probable errors the paths that do not. Schulz et al. (2013) tested the 
presented segmentation algorithm for roots in MRI images and used artificial generated 
images with varying resolution and noise levels to ground-truth the algorithm and find 
acceptable values. The images were generated with SimRoot. Rao et al. (2019) used 
modeled electrical conductivity of root-soil systems in order to interpret measurements.

Similarly, simulated root systems provide a ready method for testing field sampling 
methods. While this is not new (c.f. Pagès and Bengough, 1997), it continues to be a fruitful 
way of interpreting the reliability and bias of core, trench, and minirhizotron samples 
(Miguel et al., 2015; Wu et al., 2018; Morandage et al., 2019). Pagès et al. (2012) took a 
different approach and compared the output of an RSA model against a collection of 
possible root length density models fitted to the same data used to parameterize the RSA 
model, and showed that the results were largely congruent. This was reassuring and, given 
the differing goals and parameterizations of RSA and RLD models, not a foregone 
conclusion.

Advances in model development

Model development in the last decade has been dominated by a desire for implementing an 
ever-increasing number of processes, more precise presentation of morphology, and 
inclusion of the environment. This required greater flexibility in the code, but also lead to 
more complex and extensive models. Communicating what the model do has become ever 
more difficult. Nearly all codes were developed modularand adopted forms of object-
oriented programming in order to accommodate team development and included more 
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flexible implementation of new algorithms. This has led to model names such as CRootBox 
and OpenSimRoot which, in practice, are rather names for code bases with which different 
models can be constructed, depending on modules and parameters used. Modularity, in this
case, leads to the encapsulation of different parts of the model, not necessarily 
transparency about what the model does. Few models have trackable public histories or 
backward compatibility and it is even a question as to what extent published results can be 
repeated, assuming licenses do not restrict access to the code. Because of this, there is a 
need for more transparency, simplification and better, more formal ways for 
parameterization of the models.

Continued model coupling

Multiscale-multiphysics is a current buzz-word that carries over into systems biology and 
visions have been expounded to simulate from gene regulatory networks up to the crop 
(Marshall-Colon et al., 2017). Root architectural models are supposed to play an important 
scale and discipline bridging role in this vision (Zhu et al., 2016). At the lower end of the 
scale, it has been explored how multi-cell models of roots and root tips, and the cellular 
networks that they simulate, can be scaled up to the whole-plant level (Baldazzi et al., 
2012; Band et al., 2012). At even greater scales, Warren et al. (2015) explored how root 
models can be coupled to terrestrial biosphere models.

Modeling across scales and coupling processes that function at different scales is, however, 
a difficult task. This challenge was well summarized by Koevoets et al. (2016) in a 
discussion about using RSA models to advance crop breeding:

"Current models, however, are often not easy to integrate [into breeding programs]. When developing a model, 
the general challenge is to make it comprehensive, widely applicable and simple. [....] As soon as models tend to be
more widely applicable or incorporate more conditions, they tend to become more complex and the number of 
parameters increases. This decreases the ease of interpretation and especially the ease of integration into a larger 
model (including soil and plant performance models)."

One of the challenges currently being explored is the coupling of roots to soil models. In 
this coupling, the geometries of both models do not necessarily match and matching them 
would, because of the deforming nature of root growth, require a computationally intensive
solution (Postma et al., 2008). Adaptive meshing was tried in the RSWMS model (Schröder 
et al., 2009) but abandoned as it did not seem to provide more speed or accuracy than a 
static mesh. A challenge is posed not only by the geometry but also the required resolution 
of the mesh around the roots. To circumvent these issues, Mai et al. (2018) coupled a high-
resolution rhizosphere model around the roots to a much coarser 3D soil domain model. 
The work demonstrated that in doing so, the sink term at the higher scale might be 
improved, as well as the outer boundary condition at the lower scale, but that conflicting 
assumptions at both scales remain.

A more straight forward development of model coupling is the coupling of RSA models to 
FSPM of the shoot. An early approach was presented by Lobet et al. (2014) who used a 
coupled model to simulate water transport from roots to leaves, and more recently Fang et 
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al. (2019) have taken a similar approach using different component models and adding 
nutrient ion flux as well as water flow. The advances in FSPM-shoot models were recently 
reviewed by Evers et al. (2018). Coupling of shoot and root seems a logical step forward 
and will enable a much better understanding of shoot-root interactions than thus far 
possible.

Modeling platforms to aid in defining new models

To facilitate the development of coupled models, different software platforms have been 
developed which are able to couple various submodels. From an IT perspective, this is best 
achieved through what is called loose coupling (Figure 5). Loose coupling is achieved when 
different components of software (in this case different models) are coupled over a 
standardized programming interface, without the components having any specific 
information about the implementation of the other component. This means that the data 
exchange between models is abstracted, such that one model can have implementation 
changes without the need to reprogram other models. This enables independent 
development, and crucially independent testing, of the different coupled components. It 
also facilitates the extension of the software by introducing new models and coupling them 
over the standardized programming interface. Software platforms for simulation typically 
implement some form of this modularity concept and various platforms have been 
developed. Various FSPM and RSA models have been constructed using such software 
platforms for simulation (SPFS).

CrossTalk (Draye and Pagès, 2006) is such an SPFS and was used to construct a coupled 
model of root and shoot architecture (Lobet et al., 2014). The coupling interface in 
CrossTalk defines the simulation theme as it requires a model for the root, the shoot, and 
the environmental components. OpenAlea (Pradal et al., 2008) is a general-purpose 
platform for constructing FSPMs and has a large code base containing many models. It has 
been used in various publications in diverse ways, but development activity on its Git 
repository seems to have stalled in recent years. AMAPstudio (Griffon and de Coligny, 
2014) with AMAPsim (Barczi et al., 2008) describes a scene, but the implementation is 
more abstract and extensible. The software includes a root architectural component, called 
DigR (Barczi et al., 2018). The approach taken in AMAPsim may be similar to approaches 
found in the gaming industry where the scene is made up of different geometric models, all 
expressed in data structures that are defined in the programming interface. This approach 
allows interactive editing of the scene, and to incorporate geometric models extracted from
3D measurements, including laser derived point clouds. The designers of AMAPsim see this
as a clear advantage over OpenAlea’s more developer and process focused approach 
(Griffon and de Coligny, 2014). 

L-systems have long been used to construct FSPMs (Prusinkiewicz and Lindenmayer, 
1990). Although useful as a formalism to construct plant geometries, L-systems do not 
define the functional aspects of these models. As an alternative, 'Growth Grammar' was 
developed to have a complete formalism to describe FSPMs (Kurth and Lanwert, 2011). To 
our knowledge, GroImp (Kniemeyer, 2008) is the only SPFS that implements 'Growth 
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Grammar'. It is mostly used to simulate shoot architectures, however an RSA model was 
implemented by Henke et al. (2014).

The majority of the SPFSs discussed above are either limited to integrating models written 
in a single language or rely on generic cross-language bindings. By contrast Yggdrasil 
(Lang, 2019) provides interprocess communication through message-passing, thus 
allowing models written in different languages to synchronize information at each timestep
even when running in parallel with each other. This tool is part of the larger 'Crops in Silico'
project (Marshall-Colon et al., 2017), an ambitious SFPS that aims to support coupling plant
models across all scales from molecular to ecosystem. As part of this ambition, Yggdrasil's 
developers claim it will be extended to support automatic runtime coupling of ODE models,
effectively allowing models written separately to be solved as a single model. Although this 
automatic coupling facility remains to be seen, if successful it should provide a major step 
forward in model coupling and co-simulation.

Many of the models that are coupled to construct an FSPM can and, in our opinion, should 
be mathematically defined as conditional algebraic equations, or as often will be the case, 
ordinary and partial differential equations (ODE, PDE). Too often they are only defined as 
programmed algorithms with discontinuities and time-step dependencies hidden. The 
models can be regarded as a system of coupled differential equations. In numerical 
mathematics, it is well known that the stability of such systems is strongly problem-
dependent. Finding the right solution can be challenging, and loose coupling further 
complicates this as it introduces the numerical challenges associated with co-simulation. 
Most SPFS ignore this and often rely on a single step, first order, explicit coupling method. 
OpenSimRoot was specifically developed as an SPFS for coupling ODEs using predictor 
corrected methods. This, in theory, should provide more robustness and reduce numerical 
errors, but is no guarantee that the right solution will be found. Thus far users have little 
way to know how accurate the solution is other than checking mass balances and 
sensitivity for time and space discretization. These issues are not specific to RSA models, 
and present a challenge to nearly all dynamic models in biology. Numerical accuracy has 
been much more of a concern in areas of physics and soil science, possibly in part because 
plant biology is plagued by other formidable sources of uncertainty.

In addition to large multi-model platforms, recent advances in web technology have 
allowed the development of a variety of new interfaces for individual models, in some cases
even allowing users to run the entire model inside their browser with no further 
computing resources required. For example CRootBox itself is a compiled C++ application, 
but its developers also maintain shinyRootBox (Schnepf et al., 2018a), a live interactive 
modeling environment that allows users to explore predefined parameter sets and 
experiment with new parameter values by adjusting sliders in a web browser while the 
simulation updates in real time (Figure 6).

13

469
470

471
472
473
474
475
476
477
478
479
480
481

482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498

499
500
501
502
503
504
505
506



Simplification of models

The ever-increasing complexity of RSA models has led to important work towards their 
simplification. Specifically, Archisimple (Pagès et al., 2014) is an RSA model implemented 
in the scripting language R and has a reduced parameter set. This was achieved by 
assuming correlations among certain parameters. Archisimple takes advantage of 
experimentally observed correlations for branching patterns (Pagès, 2014), lateral root 
traits (Wu et al., 2016) and axial root traits (Wu et al., 2014). Sensitivity analysis is more 
easily achieved with a model that has a reduced parameter set (Pagès, 2011) and the 
relation between root length density profiles and RSA models could be determined (Pagès 
et al., 2012), as well as studies of the stochasticity of root systems (Pagès et al., 2013).

Although RSA models constructed with, for example, Crootbox and OpenSimRoot are often 
complex, their modularity allows simple models to be built. This raises a relevant question 
concerning what complexity can be left out. In general, this is answered through sensitivity 
analysis (e.g. Schnepf et al., 2018a; Morandage et al., 2019). However, complete sensitivity 
analyses of complex parameter sets are prohibitively large, so too often the analysis is 
performed on a subset of parameters already suspected to be sensitive. This leads to the 
conclusion that the processes included significantly influence results and therefore should 
not be ignored. For example, Thomas and Pollen-Bankhead (2010) concluded that root 
failure calculations cannot ignore soil type when parameterizing root friction angle. This 
demonstrates that there is still significant uncertainty in how to define RSA models and 
that different concepts varying in complexity are likely to be developed.

One way to reduce the RSA model is to see if the modeled root distributions can be 
represented by simpler continuous models containing fewer parameters. Different 
approaches are found in Zhang et al. (2014) and Bonneu et al. (2012). But since these 
models are not FSPM, they fall outside the scope of this review.

Better handling of input and output

In addition to uncertainty about which model parameters to include, RSA model operators 
suffer from uncertainty in deciding which values to assign to the parameters. This task is 
easier when parameters correspond to directly measurable root traits (e.g. root diameter 
in mm rather than a scaling factor in arbitrary units), but is still challenging. The de facto 
standard for most models has been to begin from an existing parameterization for the 
species of interest, then to measure plants or perform a meta-analysis (e.g. Pagès et al., 
2012). Further, models differ in which parameters they need and in the units, names, and 
interpretations of the parameters they share, which means parameters developed for one 
model are of limited value for simulating the same plant using a different model.

Several researchers have proposed systems for converting image data (scanned root 
systems, rhizoboxes, minirhizotrons, MRI scans) into model parameters. One pipeline relies
on the partially automated extraction of images into a machine-readable format, e.g. RSML 
(Lobet et al., 2015), then computing relevant parameters from the RSML input using the R 
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package archiDART (Delory et al., 2016). Several RSA models can also now read and write 
RSML directly (Postma et al., 2017; Schnepf et al., 2018b), in some cases allowing 
simulations to begin from a digitized real architecture and continue growing as if this 
architecture had been generated by the model. An alternate pipeline for image data is to 
estimate the parameters through a reverse-modeling approach, as Garré et al. (2012) did 
for a minirhizotron dataset that was too sparse to fully constrain the model, and as 
somewhat more elaborately done by Ziegler et al. (2019) using an approximate Bayesian 
computation that increased the reliability of the procedure on noisy datasets.

In any case, the rise of more detailed inputs leads to the need to rethink what constitutes a 
valid output. Comparisons between observed and predicted traits require that the model 
be parameterized for the same scale and using the same experimental treatments as the 
observations, whether that is whole-field biomass, root length density (e.g. Bingham and 
Wu, 2011), root length of individual plants (Postma and Lynch, 2011b), or detailed time 
series of root placement and water flow (Koch et al., 2019).

This handling of input and output is one area where modeling platforms (discussed above) 
have potential to help. An example from the field of ecological modeling, and of which we 
are not aware of a root-modeling equivalent, is PEcAn ("Predictive Ecosystem Analyzer"; 
LeBauer et al., 2013), a meta-analytic data-assimilation pipeline built for ecosystem 
forecasting models that is intended to make it easy to assimilate all available data about an 
experimental site, species, or climate dataset, update it when new observations become 
available, and feed it to many models at once. If a similar platform existed for 
parameterizing and comparing RSA models, it would greatly reduce the effort needed to 
run existing models with new data and to evaluate the same scenario using multiple RSA 
models. Such multi-model comparisons could greatly aid benchmarking efforts (Schnepf et 
al., 2019) by showing divergence or convergence between predictions from models 
expected to be equivalent, and could also be used for scaling results up or down (to the 
extent that is valid for the available inputs) by running detailed and generalized models 
alongside each other.

Current challenges and future directions

Future RSA model development will likely be focused on the inclusion of more mechanisms
and concepts. These will be multi-scale (from cell to crop), but also at the plant scale will 
include, among others, root-shoot coupling, rhizosphere processes, plasticity responses, 
and root sensing and signaling. A curiously ignored subject in this area is plant protection. 
This is probably because model development typically ignored interactions among 
organisms possibly because such interactions are still not understood very well. Despite 
this, there is a need for new concepts and their implementation. Although model 
complexity will continue increasing by introduction of new processes, the time and mental 
capacity of model developers will not, and the quality of the code bases must be tested and 
maintained. Fortunately the software industry has also developed and many tools are now 
available to ease the quality-assurance process. For example, every code change in 
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OpenSimRoot is tested using CI (continuous integration) functionality built into its GitLab 
repository. The number of tests, however, is limited and needs extending. Benchmarking is 
one way of testing that the code basis can achieve sufficient accuracy but this has so far not 
been widely attempted, The first benchmarks for RSA models have been described 
(Schnepf et al., 2019) but benchmarking requires that models are to some extent made 
comparable. Currently, the variation in algorithms used and the assumptions made are 
large and documentation and unification will be themes in the years to come. Besides 
benchmarking, validation of the predictions is necessary. Although good agreement has 
been achieved between the utility of traits simulated and experimental genotypic contrast 
studies, more detailed validation is lacking.

Lack of validation raises questions about the usability of the models for non-specialists, but
the number of researchers that would like to test a hypothesis in silico is increasing. 
Nevertheless, the current software has steep learning curves. GUI development, better 
documentation, and adopting modern development practices may help.

Conclusions

In the last decade, RSA models moved from close-sourced, single-user or lab developments 
to open-source community-driven development. This was necessary as the models have 
incorporated much more complex processes. RSA models have proven to be of relevance to
many functional questions in plant nutrition and plant phenotyping. They have become 
useful tools for testing the functional benefits of RSA traits for nutrient and water 
acquisition. However, many challenges remain. Conceptually, the models do not represent 
the rhizosphere very well and the biological interactions with soil microbes are poorly 
represented if at all. Furthermore, validation of the models is still scattered, and 
benchmarking of model components, to arrive at an agreed level of quality is needed.
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Tables and Figures

Tables

Table 1: List of cited models.

Model software Citation

ArchiSimple Pagès et al. (2014)

CRootBox Schnepf et al. (2018b)

DigR Barczi et al. (2018)

GroImp Henke et al. (2014)

OpenSimRoot Postma et al. (2017)

RSWMS Javaux et al. (2008)

RootBox Leitner et al. (2010)

SimRoot Postma and Lynch (2011b)

SPACSYS Wu et al. (2007)
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Figure legends
Figure 1: Rendering of a simulated bean and maize root system with indication of various 
root traits. Simulations were run with OpenSimRoot and rendering was done with Paraview. 
Figure was reproduced with permission from Postma et al. (2017).

Figure 2: Simulated shoot biomass of 40 day old bean plants as a function of basal root whorl 
number (BRWN), number of hypocotyl born roots (HBR), basal root angles type (deep, fanned,
shallow) and nutrient availability (low P, low N, low N+P, high N+P). Figure reproduced with 
permission from Rangarajan, Postma, and Lynch (2018). 

Figure 3: Simulated shoot biomass of maize as a function of Imax (x-axis), nodal root number 
(NRN), and two soil types (sand and clay). Image printed with permission from L.York. For 
full study see York, Silberbush, and Lynch (2016).

Figure 4: Simulation of barley growing at a high planting density. Roots were simulated with 
OpenSimRoot and rendered with Paraview. A Roots with pseudo colors indicating different 
root types in order of diameter laterals (blue), seminals (yellow), nodals (green), mesocotyl 
(red). B Simulation of nitrate depletion by a high planting density of barley. For pseudo colors
see legend.

Figure 5: Conceptual diagrams illustrating "loose" vs "tight" coupling between model 
components. Shown are two possible implementations of a hypothetical model calculating the
elongation of a single root based on assimilate supply, genetic potential, and carbon 
partitioning factors. Each box represents a group of related calculations or values (which 
would likely be implemented as a class), and arrows indicate information lookup (e.g. read x -
> y as "x uses y"). Top panel: Tightly coupled design. Each calculation requires detailed 
knowledge of the internal details of other modules. Bottom panel: Loosely coupled design. 
Modules share information through standardized interfaces "Potential Growth", "Stress 
Response", and "Carbon Available", thus isolating the growth rate calculation from the details
of e.g. where and how parameters are stored or whether the potential growth rate of the 
current root is limited more by developmental factors or by root type parameters. Note that 
both implementations ultimately perform the same set of calculations; thoughtful code design
can improve maintainability and interoperability even within a set mathematical framework.

Figure 6: Screenshot of Shiny web app for generating root system architectures with 
CRootBox (https://plantmodelling.shinyapps.io/shinyRootBox/). 
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Figure 1: Rendering of a simulated bean and maize root system with indication of various 
root traits. Simulations were run with OpenSimRoot and rendering was done with Paraview. 
Figure was reproduced with permission from Postma et al. (2017).
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Figure 2: Simulated shoot biomass of 40 day old bean plants as a function of basal root whorl 
number (BRWN), number of hypocotyl born roots (HBR), basal root angles type (deep, fanned,
shallow) and nutrient availability (low P, low N, low N+P, high N+P). Figure reproduced with 
permission from Rangarajan, Postma, and Lynch (2018). 
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Figure 3: Simulated shoot biomass of maize as a function of Imax (x-axis), nodal root number 
(NRN), and two soil types (sand and clay). Image printed with permission from L.York. For 
full study see York, Silberbush, and Lynch (2016).
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Figure 4: Simulation of barley growing at a high planting density. Roots were simulated with 
OpenSimRoot and rendered with Paraview. A Roots with pseudo colors indicating different 
root types in order of diameter laterals (blue), seminals (yellow), nodals (green), mesocotyl 
(red). B Simulation of nitrate depletion by a high planting density of barley. For pseudo colors
see legend.
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Figure 5: Conceptual diagrams illustrating "loose" vs "tight" coupling between model 
components. Shown are two possible implementations of a hypothetical model calculating the
elongation of a single root based on assimilate supply, genetic potential, and carbon 
partitioning factors. Each box represents a group of related calculations or values (which 
would likely be implemented as a class), and arrows indicate information lookup (e.g. read x -
> y as "x uses y"). Top panel: Tightly coupled design. Each calculation requires detailed 
knowledge of the internal details of other modules. Bottom panel: Loosely coupled design. 
Modules share information through standardized interfaces "Potential Growth", "Stress 
Response", and "Carbon Available", thus isolating the growth rate calculation from the details
of e.g. where and how parameters are stored or whether the potential growth rate of the 
current root is limited more by developmental factors or by root type parameters. Note that 
both implementations ultimately perform the same set of calculations; thoughtful code design
can improve maintainability and interoperability even within a set mathematical framework.
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Figure 6: Screenshot of Shiny web app for generating root system architectures with 
CRootBox (https://plantmodelling.shinyapps.io/shinyRootBox/). 
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